Abstract

Abstract The concept of the renormalization group (RG) emerged from the renormalization of quantum field variables, which is typically used to deal with the issue of divergences to infinity in quantum field theory. Meanwhile, in the study of phase transitions and critical phenomena, it was found that the self–similarity of systems near critical points can be described using RG methods. Furthermore, since self–similarity is often a defining feature of a complex system, the RG method is also devoted to characterizing complexity. In addition, the RG approach has also proven to be a useful tool to analyze the asymptotic behavior of solutions in the singular perturbation theory. In this review paper, we discuss the origin, development, and application of the RG method in a variety of fields from the physical, social and life sciences, in singular perturbation theory, and reveal the need to connect the RG and the fractional calculus (FC). The FC is another basic mathematical approach for describing complexity. RG and FC entail a potentially new world view, which we present as a way of thinking that differs from the classical Newtonian view. In this new framework, we discuss the essential properties of complex systems from different points of view, as well as, presenting recommendations for future research based on this new way of thinking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call