Abstract

We study the small-world network model, which mimics the transition between regular-lattice and random-lattice behavior in social networks of increasing size. We contend that the model displays a critical point with a divergent characteristic length as the degree of randomness tends to zero. We propose a real-space renormalization group transformation for the model and demonstrate that the transformation is exact in the limit of large system size. We use this result to calculate the exact value of the single critical exponent for the system, and to derive the scaling form for the average number of `degrees of separation' between two nodes on the network as a function of the three independent variables. We confirm our results by extensive numerical simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.