Abstract

We study matrix elements of the "chromomagnetic" operator on the lattice. This operator is contained in the strangeness-changing effective Hamiltonian which describes electroweak effects in the Standard Model and beyond. Having dimension 5, the chromomagnetic operator is characterized by a rich pattern of mixing with other operators of equal and lower dimensionality, including also non gauge invariant quantities; it is thus quite a challenge to extract from lattice simulations a clear signal for the hadronic matrix elements of this operator. We compute all relevant mixing coefficients to one loop in lattice perturbation theory; this necessitates calculating both 2-point (quark-antiquark) and 3-point (gluon-quark-antiquark) Green's functions at nonzero quark masses. We use the twisted mass lattice formulation, with Symanzik improved gluon action. We also provide a nonperturbative method to compute mixing with lower dimensional operators; we use this method in numerical simulations, and extract the mixing with the 3-dimensional scalar density, finding good agreement with one-loop results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.