Abstract

We investigate the uniform piecewise linearizing question for a family of Lorenz maps. Let f be a piecewise linear Lorenz map with different slopes and positive topological entropy, we show that f is conjugate to a linear mod one transformation and the conjugacy admits a dichotomy: it is either bi-Lipschitz or singular depending on whether f is renormalizable or not. f is renormalizable if and only if its rotation interval degenerates to be a rational point. Furthermore, if the endpoints are periodic points with the same rotation number, then the conjugacy is quasisymmetric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.