Abstract
We study the renormalizable quantum gravity formulated as a perturbed theory from conformal field theory (CFT) on the basis of conformal gravity in four dimensions. The conformal mode in the metric field is managed non-perturbatively without introducing its own coupling constant so that conformal symmetry becomes exact quantum mechanically as a part of diffeomorphism invariance. The traceless tensor mode is handled in the perturbation with a dimensionless coupling constant indicating asymptotic freedom, which measures a degree of deviation from CFT. Higher order renormalization is carried out using dimensional regularization, in which the Wess-Zumino integrability condition is applied to reduce indefiniteness existing in higher-derivative actions. The effective action of quantum gravity improved by renormalization group is obtained. We then make clear that conformal anomalies are indispensable quantities to preserve diffeomorphism invariance. Anomalous scaling dimensions of the cosmological constant and the Planck mass are calculated. The effective cosmological constant is obtained in the large number limit of matter fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.