Abstract

We show that pure Yang-Mills theories with Lorentz violation are renormalizable to all orders in perturbation theory. To do this, we employ the algebraic renormalization technique. Specifically, we control the breaking terms with a suitable set of external sources which, eventually, attain certain physical values. The Abelian case is also analyzed as a starting point. The main result is that the renormalizability of the usual Maxwell and Yang-Mills sectores are both left unchanged. Furthermore, in contrast to Lorentz violating QED, the odd CPT violation sector of Yang-Mills theories renormalizes independently. Moreover, the method induces, in a natural way, mass terms for the gauge field while the photon remains massless (at least n the sense of a Proca-like term). The entire analysis is carried out at the Landau gauge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.