Abstract

The self-avoiding Levy flight (SALF) in d dimensions with Levy exponent mu is formulated as a geometrical equilibrium statistical mechanical problem. A direct renormalisation theory, based on modern field theoretic techniques, is used to derive the critical exponents and the end-to-end distance probability function through first order in epsilon =2 mu -d. The non-perturbative structure of the probability function is characterised by a universal scaling function. The SALF represents a simple many-body system that can assume a continuum of values of epsilon near zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.