Abstract
In this paper we give a much more efficient proof that the real Euclidean phi 4-model on the four-dimensional Moyal plane is renormalizable to all orders. We prove rigorous bounds on the propagator which complete the previous renormalization proof based on renormalization group equations for non-local matrix models. On the other hand, our bounds permit a powerful multi-scale analysis of the resulting ribbon graphs. Here, the dual graphs play a particular r\^ole because the angular momentum conservation is conveniently represented in the dual picture. Choosing a spanning tree in the dual graph according to the scale attribution, we prove that the summation over the loop angular momenta can be performed at no cost so that the power-counting is reduced to the balance of the number of propagators versus the number of completely inner vertices in subgraphs of the dual graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.