Abstract

It is essential for yak cheese processing to understand the rennet-induced coagulation properties of gel formation from casein micelles. We have previously discovered that yak milk requires a longer incubation time but forms stronger gels compared with cow milk. In this study, we are aiming to understand the rennet-induced coagulation properties of yak casein micelles comparing with cow casein micelles. Rheological analyses revealed that the gelling times of yak and cow casein micelles were 11.6±0.5 and 8.7±0.4min (P<0.05) respectively, but yak casein gel had a higher elastic modulus G′ (6.5±0.2Pa) than cow casein gel (2.5±0.2Pa; P<0.05). This is consistent with the results obtained by micro-rheology. Confocal laser scanning microscopic images (CLSM) and cryo-scanning electron microscopic images (cryo-SEM) showed that yak casein gel was more homogeneous and had smaller pore size than cow casein gels. Yak casein micelles had higher calcium (26.00mM), phosphate (19.90mM) and β-casein (relative 32%) concentrations. In addition, yak casein micelles were larger (Z-average 218.6nm) than cow casein micelles, and contained lower κ-casein (relative 13%). By comparison with cow casein micelles, yak casein micelle composition corresponding to their micellar calcium phosphate and κ-casein content may greatly contribute to the longer coagulation time and denser gel structure. An initial slower caseinomacropeptide (CMP) release rate and the slower rate of aggregation between para-casein micelles contributed to a more homogeneous yak gel network. Higher colloidal calcium phosphate is crucial for yak casein micelle aggregation and gel firmness because sufficient colloidal calcium phosphates can firmly glue sub-micelles and links casein micelles. This study provides valuable information for yak cheese production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call