Abstract
Angiotensinogen, angiotensin-converting enzyme, and renin constitute the components of the renin-angiotensin system. The mammalian renal proximal tubule contains angiotensinogen, angiotensin-converting enzyme, and angiotensin receptors. Previous immunohistochemical studies describing the presence of renin in the proximal tubule could not distinguish synthesized renin from renin trapped from the glomerular filtrate. In the present study, we examined the presence of renin activity and mRNA in rabbit proximal tubule cells in primary culture and renin mRNA in microdissected proximal tubules. Renin activity was present in lysates of proximal tubule cells in primary culture. Cellular renin content in cultured proximal tubule cells was increased by incubation with 10(-5) M isoproterenol and 10(-5) M forskolin by 150 and 110%, respectively. In addition, renin transcripts were detected in poly(A)+ RNA from cultured proximal tubule cells by RNA blots under high stringency conditions. In microdissected tubules from normal rats, renin mRNA was not detectable with reverse transcription and polymerase chain reaction. However, in tubules from rats administered the angiotensinogen-converting-enzyme inhibitor, enalapril, renin was easily detected in the S2 segment of the proximal tubule. We postulate the existence of a local renin-angiotensin system that enables the proximal tubule to generate angiotensin II, thereby providing an autocrine system that could locally modulate NaHCO3 and NaCl absorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.