Abstract

A new chemical architecture from oleic acid, consisting of a diol structure containing pendant furan rings, denoted the furan oligomer (FO) was synthesized and fully characterized. The FO was integrated into a linear rapeseed-based polyurethane (PU) backbone and cross-linked through a Diels-Alder (DA) reaction by using pendant furan rings and a short polypropylene oxide-based bismaleimide. This is the first time that a thermoreversible PU network based on vegetable oil has been reported. The effects of varying proportions of FO in linear and cross-linked systems, by DA, were studied. These materials were analyzed by classic characterization techniques. The stability and recyclability of the cross-linked materials were shown by successive reprocessing cycles and reanalyzing the mechanical properties. Self-healing properties were macroscopically exhibited and investigated by tensile tests on healed materials. The resulting cross-linked materials present a large range of properties, such as tunable mechanical and thermoresponsive behavior, good thermal recyclability, and self-healing abilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.