Abstract

This article investigates the potential of renewable and low-carbon fuel production for the maritime shipping sector, using Sweden as a case in focus. Techno-economic modelling and socio-technical transition studies are combined to explore the conditions, opportunities and barriers to decarbonising the maritime shipping industry. A set of scenarios have been developed considering demand assumptions and potential instruments such as carbon price, energy tax, and blending mandate. The study finds that there are opportunities for decarbonising the maritime shipping industry by using renewable marine fuels such as advanced biofuels (e.g., biomethanol), electrofuels (e.g., e-methanol) and hydrogen. Sweden has tremendous resource potential for bio-based and hydrogen-based renewable liquid fuel production. In the evaluated system boundary, biomethanol presents the cheapest technology option while e-ammonia is the most expensive one. Green electricity plays an important role in the decarbonisation of the maritime sector. The results of the supply chain optimisation identify the location sites and technology in Sweden as well as the trade flows to bring the fuels to where the bunker facilities are potentially located. Biomethanol and hydrogen-based marine fuels are cost-effective at a carbon price beyond 100 €/tCO2 and 200 €/tCO2 respectively. Linking back to the socio-technical transition pathways, the study finds that some shipping companies are in the process of transitioning towards using renewable marine fuels, thereby enabling niche innovations to break through the carbon lock-in and eventually alter the socio-technical regime, while other shipping companies are more resistant. Overall, there is increasing pressure from (inter)national energy and climate policy-making to decarbonise the maritime shipping industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call