Abstract

Renewable hydrogen production by aqueous phase reforming (APR) over Ni/Al-Ca catalysts was studied using pure or refined crude glycerol as feedstock. The APR was carried out in a fixed bed reactor at 238 °C, 37 absolute bar for 3 h, using a solution of 5 wt.% of glycerol, obtaining gas and liquid products. The catalysts were prepared by the co-precipitation method, calcined at different temperatures, and characterized before and after their use by several techniques (XRD, ICP-OES, H2-TPR, NH3-TPD, CO2-TPD, FESEM, and N2-physisorption). Increasing the calcination temperature and adding Ca decreased the surface area from 256 to 188 m2/g, and its value after the APR changed depending on the feedstock used. The properties of the acid and basic sites of the catalysts influenced the H2 yield also depending on the feed used. The Ni crystallite was between 6 and 20 nm. In general, the incorporation of Ca into Ni-based catalysts and the increase of the calcination temperature improved H2 production, obtaining 188 mg H2/mol C fed during the APR of refined crude glycerol over Ni/AlCa-675 catalyst, which was calcined at 675 °C. This is a promising result from the point of view of enhancing the economic viability of biodiesel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.