Abstract

Natural and human environments are abundant of unused renewable energy such as mechanical energy, acoustic energy, electromagnetic energy, thermal energy, etc. The idea of designing multi-scale metamaterials with super-normal functions on energy manipulation is utilized in multi-field renewable energy harvesting and absorbing. The metamaterials are able to enhance the local energy density by confining and focusing the energy before it to be harvested, leading to remarkable improvement of the output power and conversion efficiency. Leveraging the multi-scale metamaterials for renewable energy harvesting is an emerging direction to exploit the excess energy in the natural and man-made environments. This paper provides a brief overview of the studies published over the past decade on mechanical, acoustic, electromagnetic and thermal energy harvesting using the relevant metamaterials. The goal is to spark the interest of new investigators to this unconventional but fast-evolving branch of energy harvesting that will impact the Internet of things, smart cities and sustainable developments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.