Abstract

Nucleation of polylactide and polypropylene using novel renewable resource biobased carbon nanospheres (CNS) is investigated using differential scanning calorimetry and polarized optical microscopy. Isothermal studies near the optimal crystallization temperature demonstrate at least a five-fold increase in crystallization rate in PP but only a 1.4 times faster crystallization in PLA. Non-isothermal studies reveal an asymptotic relationship of the maximum crystallization temperature with increasing CNS weight loading in PP and no relationship in PLA. Microscopy indicates some aggregation in the solution blended samples and that average spherulite size is reduced 10-fold due to faster nucleation in the composites as compared to the neat polymer. The fractional crystallinity achieved during non-isothermal crystallization increases by about 7% with addition of a small amount of CNS and decreases with weight loading higher than 1%. The crystallization rates obtained in polypropylene are competitive with widely used mineral talc nucleating agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call