Abstract

It is a huge challenge to run IoT devices/sensors powered solely through ambient harvested energy. Since the harvested energy is less and is stochastic in nature, it is extremely challenging to achieve low latency and high reliability. To this end, we propose a distributed, energy-management module called ReNEW, using Constructive Interference (CI) to achieve our target of increased reliability, especially in the low harvesting regimes. We choose CI-based protocols to leverage low latency guarantees. Specifically, we propose a Markov-Decision model to maximize the energy utility in the infinite horizon by allocating energy optimally using a threshold-optimal policy. Since an energy scheduler is insufficient we propose distributed techniques to conserve energy on redundant nodes in the network, and dynamically activate them based on feedback. We implement ReNEW on Indriya and FlockLab testbeds for real-world scenarios in a network of 20 source nodes out of the 30 nodes. ReNEW collects data periodically with 2.5 times higher packet reception compared to LWB when the harvested energy is as low as 50μJ/s for 100B packets every 30s with a saving of 25% higher residual energy. In a nutshell, by integrating ReNEW with CI based protocols, we enable guaranteed latency and increased reliability in battery-less devices/networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.