Abstract

PurposeTo evaluate the diagnostic performance of a novel deep learning attenuation correction software (SAPCA) for myocardial perfusion imaging (MPI) using a cadmium-zinc-telluride (CZT) cardio dedicated camera with invasive coronary angiography (ICA) correlation for the diagnosis of coronary artery disease (CAD) in a high-risk population. MethodsRetrospective study of 300 patients (196 males [65%], mean age 68 years) from September 2014 to October 2019 undergoing MPI, followed by ICA and evaluated by means of quantitative angiography software, within six months after the MPI. The mean pre-test probability score for coronary disease according to the European Society of Cardiology criteria was 37% for the whole cohort. The MPI was performed in a dedicated CZT cardio camera (D-SPECT® Spectrum Dynamics) with a two-day protocol, according to the European Association of Nuclear Medicine guidelines. MPI was retrospectively evaluated with and without the SAPCA. ResultsThe overall diagnostic accuracy of MPI without SAPCA to identify patients with any obstructive CAD at ICA was 87%, Sensitivity 94%, Specificity 57%, positive predictive value 91% and negative predictive value 64%. Using SAPCA the overall diagnostic accuracy was 90%, sensitivity 91%, specificity 86%, positive predictive value 97% and negative predictive value 66%. ConclusionUse of the novel SAPCA enhances performance of the MPI using the CZT D-SPECT® camera and achieves improved results, especially avoiding artefacts and reducing the number of false positive results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call