Abstract

Nowadays, sensitive chiral methods are required for the determination of chiral impurities and for assays in biological samples. Supercritical fluid chromatography (SFC), one of the main techniques to separate chiral molecules, can be coupled to MS to provide such sensitive methods. Moreover, chiral separation strategies are very useful to reduce the development time and cost of such methods. This study investigates the transfer of an existing non-MS compatible screening step (as part of a separation strategy) into an MS-compatible one. The initial step had a cumulative success rate of 100 % for 57 tested compounds using methanol or 2-propanol as mobile phase modifier on one of four chiral stationary phases. The additives applied in the original mobile phases, i.e. isopropylamine and trifluoroacetic acid, negatively affect the ionization in SFC-MS and thus need to be replaced. Formic acid, acetic acid, water, ammonia, ammonium acetate and ammonium formate were investigated as MS-compatible additives in different combinations and concentrations. Only methanol-based mobile phases were considered in this study because high system pressures were obtained with isopropanol. The other experimental parameters remained the same as in the initial screening step. The effects of the alternative additives on the obtained resolutions as well as on the global success rate were investigated. The best alternative MS-compatible mobile phase contained 0.5 % CH3COOH and 40 mM NH3 as additives. This mobile phase provided the highest number of separations and rather high resolutions. An MS-compatible screening step was defined with this alternative mobile phase. Compared to the original additives, a similar success rate was obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.