Abstract

Recent evidence suggests that necroptosis may contribute to the development of kidney injury. Renalase is a novel secretory protein that exerts potent prosurvival and anti-inflammatory effects. We hypothesized that renalase could protect the kidney from salt-induced injury by modulating necroptosis. High salt and renalase treatments were administered to Dahl salt-sensitive (SS) rats, renalase knockout (KO) mice, and HK-2 cells. Furthermore, a cohort of 514 eligible participants was utilized to investigate the association between single nucleotide polymorphisms (SNPs) in the genes RIPK1, RIPK3, and MLKL, and the risk of subclinical renal damage (SRD) over 14 years. A high-salt diet significantly increased the expression of key components of necroptosis, namely RIPK1, RIPK3, and MLKL, as well as the release of inflammatory factors in SS rats. Treatment with recombinant renalase reduced both necroptosis and inflammation. In renalase KO mice, salt-induced kidney injury was more severe than in wild-type mice, but supplementation with renalase attenuated the kidney injury. In vitro experiments with HK-2 cells revealed high salt increased necroptosis and inflammation. Renalase exhibited a dose-dependent decrease in salt-induced necroptosis, and this cytoprotective effect was negated by the knockdown of PMCA4b, which is the receptor of renalase. Furthermore, the cohort study showed that SNP rs3736724 in RIPK1 and rs11640974 in MLKL were significantly associated with the risk of SRD over 14 years. Our analysis shows that necroptosis plays a significant role in the development of salt-induced kidney injury and that renalase confers its cytoprotective effects by inhibiting necroptosis and inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.