Abstract

The sympathetic nervous system is important for cardiovascular regulation, particularly during acute stress. Efferent sympathetic outflow can be regulated in an organ-dependent manner, but whether renal and leg vasoconstriction are associated at rest or during sympathetic stressors is unknown. Therefore, we sought to determine the relationships between muscle sympathetic nerve activity (MSNA), leg vascular conductance (LVC), and renal vascular conductance (RVC) at rest and during common laboratory-based sympathoexcitatory stimuli in a cohort of young healthy adults. Beat-to-beat arterial pressure (photoplethysmography), MSNA (microneurography), superficial femoral artery blood flow, and renal artery blood velocity (Doppler ultrasound) were measured at rest and during static handgrip exercise (30% maximal voluntary contraction), postexercise circulatory occlusion (PECO), and cold stress (hand in 3.8 ± 1.3°C water) in 37 young healthy adults (16 females, 21 males). At rest, RVC was unrelated to LVC (r = -0.11, P = 0.55) or MSNA burst frequency (ρ = -0.22, P = 0.26). Static handgrip, PECO, and cold stress each induced an increase in mean arterial pressure and MSNA and a reduction in RVC (all P < 0.001). LVC was unaltered during stress (all P ≥ 0.16), with the exception of a reduction during the second minute of cold stress (P = 0.03). During stress, changes in RVC were not associated with changes in LVC (handgrip: r = -0.24, P = 0.21; PECO: ρ = -0.04, P = 0.82; cold stress: r = -0.17, P = 0.38) or MSNA (handgrip: ρ = -0.14, P = 0.48; PECO: r = 0.27, P = 0.15; cold stress: r = -0.27, P = 0.16). Furthermore, MSNA was not associated with LVC at rest or during stress (all P ≥ 0.12). The present findings highlight the differential control of regional sympathetic vasoconstriction at rest and during stress in young healthy humans.NEW & NOTEWORTHY The sympathetic nervous system plays a critical role in cardiovascular regulation at rest and during stress. We demonstrate that renal artery vascular conductance is unrelated to superficial femoral artery vascular conductance or muscle sympathetic nerve activity at rest or during laboratory-based sympathetic stressors in young healthy adults. These findings support the concept of differential control of peripheral sympathetic outflow at rest and during stress in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call