Abstract

Elevated plasma total homocysteine, an independent risk factor for cardiovascular disease, is commonly observed in renal patients. We have previously shown that the kidney is a major site for the removal of plasma homocysteine in the rat. The present investigation was performed to further characterize the capacity of the kidney to handle acute elevations in plasma homocysteine concentrations. Acute hyperhomocysteinemic conditions (4- to 7-fold > controls) in rats were produced by either a primed-continuous infusion of L-homocysteine or exposure to 80:20% nitrous oxide:oxygen, which results in the inhibition of methionine synthase. At physiological homocysteine concentrations, approximately 15% of the arterial plasma homocysteine was removed on passage through the kidney. Renal homocysteine uptake was approximately 85% of the filtered load. The urinary excretion of homocysteine was negligible (<2%). During acute hyperhomocysteinemia produced by the infusion of L-homocysteine, renal homocysteine uptake was increased fourfold and was equivalent to 50% of the infused dose, while urinary excretion remained negligible. Renal homocysteine uptake during nitrous oxide-induced hyperhomocysteinemia increased threefold, with urinary excretion remaining negligible. These results provide strong evidence that the kidney has a significant capacity for metabolizing acute elevations in plasma homocysteine, and support a very limited role for the re-methylation pathway in renal homocysteine metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.