Abstract

Growing evidence suggests that chronic exposure to pesticides may cause adverse effects on the health of the exposed population leading to organ-specific toxicity, including kidney damage. Traditional markers used to assess renal function (glomerular filtration rate (GFR), and serum creatinine and cystatin C –Cys-C–) are inadequate to evaluate a potential subclinical renal impairment linked to occupational exposure to pesticides, since levels above the upper limit of normal only occur when renal damage is very extensive. The use of more sensitive biomarkers is therefore needed. This study investigated novel urinary biomarkers of kidney function (microalbuminuria, osteopontin (OPN), trefoil factor 3 (TFF3), β-2-microglobulin, neutrophil gelatinase-associated lipocalin (NGAL), and Cys-C), together with the aforementioned traditional serum biomarkers, to assess potential kidney damage in farmers exposed to pesticides in an intensive agriculture setting. The study population consisted of 175 greenhouse workers and 91 healthy control subjects from Almeria (Southeastern Spain), a major hub of greenhouse agriculture. Data were collected at two different time-points of the same crop season: a period with greater pesticide use (high exposure period) and another with lower pesticide use (low exposure period). Significantly higher urinary levels of OPN and TFF3 were found in greenhouse workers than in controls, and in the high pesticide exposure period compared to that of low exposure. These changes suggest a subclinical tubular damage linked to pesticide exposure. In contrast, microalbuminuria, GFR, serum creatinine and Cys-C failed to be associated with pesticide exposure, suggesting that glomerular function was spared. Increased OPN and TFF3 levels over time may suggest a gradual progression from tubular dysfunction to chronic kidney disease in the exposed population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.