Abstract
The hepatocyte nuclear factor-1beta encoded by the TCF2 gene plays a role for the specific regulation of gene expression in various tissues such as liver, kidney, intestine, and pancreatic islets and is involved in the embryonic development of these organs. TCF2 mutations are known to be responsible for the maturity-onset diabetes of the young type 5 associated with renal manifestations. Several observations have suggested that TCF2 mutations may be involved in restricted renal phenotypes. Eighty children (median age at diagnosis 0.2 yr) with renal cysts, hyperechogenicity, hypoplasia, or single kidneys were studied. Quantitative multiplex PCR amplification of short fluorescence fragments for the search of large genomic rearrangements and sequencing for the detection of point mutations were performed. TCF2 anomalies were detected in one third of patients (25 of 80). The main alteration was the complete deletion of the TCF2 gene detected in 16 patients. Family screening revealed de novo TCF2 anomalies in nine of 17 probands with a high prevalence of deletions (seven of nine). TCF2 anomalies were associated with bilateral renal anomalies (P < 0.001) and bilateral cortical cysts (P < 0.001). However, abnormal renal function, detected in 40% of patients, was independent of the TCF2 genotype. No difference in renal function or severity of renal morphologic lesions was observed between patients with a TCF2 deletion and those with point mutations. In conclusion, TCF2 molecular anomalies are involved in restricted renal phenotype in childhood without alteration of glucose metabolism. These findings have important implications in the diagnosis of patients with renal dysplasia with cysts and their follow-up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.