Abstract

The present study examined the extent to which leukocyte infiltration into the kidneys in Ang II (angiotensin II)-induced hypertension is determined by elevation of renal perfusion pressure (RPP). Male Sprague-Dawley rats were instrumented with carotid and femoral arterial catheters for continuous monitoring of blood pressure and a femoral venous catheter for infusion. An inflatable aortic occluder cuff placed between the renal arteries with computer-driven servo-controller maintained RPP to the left kidney at control levels during 7 days of intravenous Ang II (50 ng/kg per minute) or vehicle (saline) infusion. Rats were fed a 0.4% NaCl diet throughout the study. Ang II-infused rats exhibited nearly a 50 mm Hg increase of RPP (carotid catheter) to the right kidney while RPP to the left kidney (femoral catheter) was controlled at baseline pressure throughout the study. As determined at the end of the studies by flow cytometry, right kidneys exhibited significantly greater numbers of T cells, B cells, and monocytes/macrophages compared with the servo-controlled left kidneys and compared with vehicle treated rats. No difference was found between Ang II servo-controlled left kidneys and vehicle treated kidneys. Immunostaining found that the density of glomeruli, cortical, and outer medullary capillaries were significantly reduced in the right kidney of Ang II-infused rats compared with servo-controlled left kidney. We conclude that in this model of hypertension the elevation of RPP, not Ang II nor dietary salt, leads to leukocyte infiltration in the kidney and to capillary rarefaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call