Abstract

Effects of graded supine dynamic exercise (30, 60, and 80-90% of maximal physical capacity, i.e., work loads of 69, 132, and 188 W) on renal vascular resistance (RVR); renal sympathetic nerve activity [assessed by the renal venous overflow of norepinephrine (NE)]; renal overflows of dopamine (DA), immunoreactive neuropeptide Y (NPY-LI), and renin; as well as plasma concentrations of angiotensin-(1-8)-octapeptide (ANG II) were evaluated in eight healthy male volunteers. Exercise evoked stimulus-dependent and marked elevations of RVR, arterial NE, epinephrine (Epi), and DA. RVR increased by 140% and the renal overflows of NE and DA increased by 1,331 and 179%, respectively, at 188 W. A net removal of NPY-LI at rest turned into a small net renal overflow, which correlated with increases in RVR at 188 W. Increases in renin release (+1,200% at 188 W) correlated with increases in renal NE and DA overflows and with arterial Epi levels. Arterial ANG II levels increased stimulus dependently (by 264% at 188 W) and correlated more closely with increases in RVR than did other variables. Thus dynamic exercise is a potent stimulus for renal nerve activation in humans, and renal sympathetic nerve activity may contribute to increased RVR both directly (NE and, at exhaustive work loads, possibly NPY) and indirectly (via renin-mediated ANG II formation).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call