Abstract

Recent experimental evidence suggests normothermic machine perfusion of the vascularized composite allograft results in improved preservation compared to static cold storage, with less reperfusion injury in the immediate post-operative period. However, metabolic acidosis is a common feature of vascularized composite allograft perfusion, primarily due to the inability to process metabolic by-products. We evaluated the impact of combined limb-kidney perfusion on markers of metabolic acidosis and inflammation in a porcine model. Ten paired pig forelimbs were used for this study, grouped as either limb-only (LO, n=5) perfusion, or limb-kidney (LK, n=5) perfusion. Infrared thermal imaging was used to determine homogeneity of perfusion. Lactate, bicarbonate, base, pH, and electrolytes, along with an inflammatory profile generated via the quantification of cytokines and cell-free DNA in the perfusate were recorded. The addition of a kidney to a limb perfusion circuit resulted in the rapid stabilization of lactate, bicarbonate, base, and pH. Conversely, the LO circuit became progressively acidotic, correlating in a significant increase in pro-inflammatory cytokines. Global perfusion across the limb was more homogenous with LK compared to LO. The addition of a kidney during limb perfusion results in significant improvements in perfusate biochemistry, with no evidence of metabolic acidosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call