Abstract

Glomerular filtration rate (GFR) is acutely increased following a high-protein meal or systemic infusion of amino acids. The mechanisms underlying this renal functional response remain to be fully elucidated. Nevertheless, they appear to culminate in preglomerular vasodilation. Inhibition of the tubuloglomerular feedback signal appears critical. However, nitric oxide, vasodilator prostaglandins, and glucagon also appear important. The increase in GFR during amino acid infusion reveals a "renal reserve," which can be utilized when the physiological demand for single nephron GFR increases. This has led to the concept that in subclinical renal disease, before basal GFR begins to reduce, renal functional reserve can be recruited in a manner that preserves renal function. The extension of this concept is that once a decline in basal GFR can be detected, renal disease is already well progressed. This concept likely applies both in the contexts of chronic kidney disease and acute kidney injury. Critically, its corollary is that deficits in renal functional reserve have the potential to provide early detection of renal dysfunction before basal GFR is reduced. There is growing evidence that the renal response to infusion of amino acids can be used to identify patients at risk of developing either chronic kidney disease or acute kidney injury and as a treatment target for acute kidney injury. However, large multicenter clinical trials are required to test these propositions. A renewed effort to understand the renal physiology underlying the response to amino acid infusion is also warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call