Abstract

To investigate the renal fat fraction and water molecular diffusion features in patients with early-stage DN using Dixon imaging and diffusion tensor imaging (DTI). Sixty-one type 2 diabetics (normoalbuminuria: n = 40; microalbuminuria: n = 21) and 34 non-diabetic volunteers were included. All participants received three-point Dixon imaging and DTI using a 3.0-T magnetic resonance imager. The fat fraction [FF] and DTI features [fractional anisotropy (FA), apparent diffusion coefficient (ADC), tract counts and length from DTI tractography] were collected. All image features were compared between cohorts using one-way ANOVA with Bonferroni post-hoc analysis. Renal FF in the microalbuminuric group was significantly higher than in the normoalbuminuric and control groups (5.6% ± 1.3%, 4.7% ± 1.1% and 4.3% ± 0.5%, respectively; p < 0.001). Medullary FA in the microalbuminuric group was the lowest (0.31 ± 0.06) in all cohorts. The tract counts and length in the renal medulla were significantly lower in the microalbuminuric group than in the other two groups. Dixon imaging and DTI are able to detect renal lipid deposition and water molecule diffusion abnormalities in patients with early-stage DN. Both techniques have the potential to noninvasively evaluate early renal impairment in type 2 diabetes. • Dixon imaging demonstrated renal fat deposition in early-stage DN; • Renal fractional anisotropy decreased in patients with early-stage DN; • Renal tractography demonstrated reduced track counts and length in early-stage DN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call