Abstract

1. Volume expansion is observed in animal and human models of diabetic nephropathy, which is in a large part a result of disordered renal tubular cell sodium and water transport. 2. Sodium transport in the proximal tubule is increased in diabetes mellitus as a result of enhanced activity of the sodium-hydrogen exchanger-3 (NHE3), the key transporter for transcellular reabsorption of sodium. Transactivation of the epidermal growth factor receptor (EGFR) by factors inherent in the milieu of diabetes mellitus increases serum glucocorticoid regulated kinase-1 (Sgk1), a key regulator of NHE3. 3. Enhanced sodium and water reabsorption, occurring as a consequence of endogenous or pharmacological stimulation of the peroxisome proliferator-activated receptor gamma is Sgk1 mediated. 4. EGFR inhibitors, which are currently used clinically to treat malignancies, might have potential in attenuating the cellular mechanisms responsible for thiazolidinedione (TZD)-mediated sodium and water transport in diabetes. 5. In the present review, the authors focus on the importance of the EGFR in sodium and water uptake in the proximal tubule in the environment of pathophysiological and pharmacological influences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.