Abstract

The present study examined the effects of recombinant glucagon-like peptide-1-(7-36)amide (rGLP-1) on renal hemodynamics and excretory function in innervated and denervated kidneys of anesthetized rats. Intravenous infusion of rGLP-1 at a dose of 1 μg·kg −1·min −1 increased urine flow and Na + excretion 13-fold in the innervated kidney. The natriuretic and diuretic response to rGLP-1 was attenuated in the denervated kidney in which urine flow and Na + excretion only increased 3-fold. Fractional excretion of Li +, an index of proximal tubular reabsorption, increased 219% in the innervated kidney but only 54% in the denervated kidney during infusion of rGLP-1. The diuretic and natriuretic response to rGLP-1 was associated with an increase in glomerular filtration rate (39%) in the innervated kidney, but it had no effect on glomerular filtration rate in the denervated kidney. These results indicate that the natriuretic and diuretic effects of rGLP-1 are due to inhibition of Na + reabsorption in the proximal tubule. It also increases glomerular filtration rate in kidneys with an intact renal innervation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.