Abstract

The purpose of this study was to determine the relative importance of bradykinin and nitric oxide (NO) in mediating renal responses to altered sodium intake in Dahl salt-resistant (Dahl-SR) and salt-sensitive (Dahl-SS) rats. Dahl-SR and Dahl-SS rats consumed a diet containing 0.15% (low) or 4.0% (high) sodium chloride for 10 days. A microdialysis technique was then used to measure renal cortical interstitial fluid (RIF) cyclic 3',5'-guanosine monophosphate (cGMP) production in anesthetized rats, under baseline conditions and during acute cortical infusion of either the bradykinin B2 receptor antagonist icatibant or the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME). Urine sodium excretion was monitored simultaneously by ureter cannulation. Results Baseline sodium excretion was similar in the two types of rats, but RIF cGMP was significantly elevated in Dahl-SR compared to Dahl-SS rats on both low and high sodium diets. Icatibant infusion significantly reduced both RIF cGMP and sodium excretion in Dahl-SR rats during low sodium intake, but had no effect in Dahl-SS rats on either diet L-NAME infusion significantly reduced sodium excretion in Dahl-SR and Dahl-SS rats, during both low and high sodium intake. L-NAME infusion caused a significant reduction in RIF cGMP in Dahl-SR and Dahl-SS rats on low sodium diet, but reduced RIF cGMP only in Dahl-SR rats on high sodium diet. Conclusion These data suggest a potential role for cortical bradykinin, but not NO, in mediating the differences in the renal response to low sodium intake between Dahl-SR and Dahl-SS rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call