Abstract
In response to diffused ionizing radiation damage throughout the body caused by nuclear leaks and inaccurate radiotherapy, radioprotectants with considerable free radical scavenging capacities, along with negligible adverse effects, are highly regarded. Herein, unlike being performed as toxic chemotherapeutic drug candidates, molybdenum-based polyoxometalate nanoclusters (Mo-POM NCs) were developed as a non-toxic potent radioprotectant with impressive free radical scavenging capacities for ionizing radiation protection. In comparison to the clinically used radioprotectant drug amifostine (AM), the as-prepared Mo-POM NCs exhibited effective shielding capacity by virtue of their antioxidant properties resulting from a valence shift of molybdenum ions, alleviating not only ionizing radiation-induced DNA damage but also disruption of the radiation-sensitive hematopoietic system. More encouragingly, without trouble with long-term retention in the body, ultra-small sized Mo-POM NCs prepared by the mimetic Folin-Ciocalteu assay can be removed from the body through the renal-urinary pathway and the hepato-enteral excretory system after completing the mission of radiation protection. This work broadened the biological applications of metal-based POM chemotherapeutic drugs to act as a neozoic radioprotectant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.