Abstract
The molecular mechanisms of renal injury and fibrosis in proteinuric nephropathies are not completely elucidated but the renin-angiotensin system (RAS) is involved. Idiopathic membranous nephropathy (MN), a proteinuric disease, may progress to renal failure. Our aim was to investigate the localization of RAS components in MN and their correlation with profibrotic parameters and renal injury. Renal biopsies from 20 patients with MN (11 with progressive disease) were studied for the expression of RAS components [angiotensin-converting enzyme (ACE) and angiotensin II (Ang II)] by immunohistochemistry. Transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF)-BB were studied by by in situ hybridization, and myofibroblast transdifferentiation by alpha-smooth muscle actin (alpha-SMA) staining. ACE immunostaining was elevated in tubular cells and appeared in interstitial cells colocalized in alpha-actin-positive cells in progressive disease. Elevated levels of Ang II were observed in tubules and infiltrating interstitial cells. TGF-beta and PDGF mRNAs were up-regulated mainly in cortical tubular epithelial cells in progressive disease (P < 0.01) and correlated with the myofibroblast transdifferentiation (r = 0.8, P < 0.01 for TGF-beta; r = 0.6, P < 0.01 for PDGF). Moreover, in serial sections of progressive cases, the ACE and Ang II over-expression was associated with the tubular expression of these pro-fibrogenic factors, and with the interstitial infiltration and myofibroblast activation. Intrarenal RAS is selectively activated in progressive MN. De novo expression of ACE at sites of tubulointerstitial injury suggests that the in situ Ang II generation could participate in tubular TGF-beta up-regulation, epithelial-myofibroblast transdifferentiation, and disease progression. These results suggest a novel role of Ang II in human tubulointerstitial injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.