Abstract

1. To measure the renal contribution to acid-base homeostasis during hypoxia (not associated with hypercapnia) and in response to the subsequent mild metabolic acidosis and to determine the effects of this hypoxia on the renal handling of sodium, studies were performed in six chronically catheterized foetal sheep (129-138 days gestation) before, during and for 1 h after a 2 h period of hypoxia. 2. Hypoxia was induced in the conscious ewe by infusing nitrogen into the trachea. Foetal arterial oxygen tension fell to 12.0 +/- 0.6 mmHg (P < 0.001). Carbon dioxide tension fell during hypoxia (P < 0.001) and was still somewhat reduced in the recovery period (P < 0.005). Arterial pH fell progressively to 7.19 +/- 0.08 in the recovery period (P < 0.05). Plasma bicarbonate concentrations fell (P < 0.001) and lactate rose (P < 0.001). 3. Urinary pH and the excretion rates of bicarbonate, titratable acid, ammonium and net acid did not change during hypoxia. Ammonium excretion and, hence, generation of new bicarbonate increased in the recovery period (P < 0.05). 4. Renal sodium excretion progressively increased and was greatest after normoxia was restored (P < 0.05). This natriuresis was due to a fall in the reabsorption of sodium by the proximal tubule (P < 0.05). Proximal reabsorption of sodium was directly related to foetal pH (P < 0.0001) and bicarbonate reabsorption (P < 0.001). 5. It was concluded that: (i) the foetal kidneys began to contribute to the maintenance of acid-base balance within the first hour of recovery from a 2 h episode of hypocapnic hypoxia, even though the acidosis was relatively mild; and (ii) a reduction in bicarbonate reabsorption was probably the most important factor that limited sodium reabsorption by the renal tubule during this experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.