Abstract

Remyelination following central nervous system (CNS) demyelination restores rapid saltatory conduction of action potentials and contributes to the maintenance of axonal integrity. This robust regenerative phenomenon stands in contrast to the limited repair capacity that is characteristic of CNS neuronal injury. However, despite its efficiency in experimental models and some clinical diseases, remyelination failure becomes an increasingly pronounced feature of the pathology of chronic multiple sclerosis (MS) lesions. Chronic demyelination predisposes axons to atrophy, an irreversible event that is a major pathological correlate of progressive functional decline. This has created a compelling case for developing therapies that promote remyelination: evidence from experimental animal models suggests that hormones may have a beneficial role to play in this regard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call