Abstract

Microbial synthesis of plant-based (-)-menthol is of great interest because of its high demand (≈30 kiloton per year) as well as unique odor and cooling characteristics. However, this remains a great challenge due to the yet unfilled gap between (-)-limonene and (+)-cis-isopulegone. Herein, the first artificial and effective system was developed for (+)-cis-isopulegone biosynthesis from (-)-limonene by recruiting two bacterial enzymes to replace their inefficient counterparts from Mentha piperita, limonene-3-hydroxylase, and isopiperitenol dehydrogenase. A cofactor self-regenerative recombinant Escherichia coli strain was constructed by introducing a formate dehydrogenase for nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and an engineered microbial isopiperitenol dehydrogenase. The production of (+)-cis-isopulegone (up to 281.2 mg L-1 ) was improved by 36 times compared with that of the initial strain. This work lays a reliable foundation for the microbial synthesis of (-)-menthol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.