Abstract

The combined density functional theory and multireference configuration interaction (DFT/MRCI) method is a powerful tool for the calculation of excited electronic states of large molecules. There exists, however, a large amount of superfluous configurations in a typical DFT/MRCI wave function. We show that this deadwood may be effectively removed using a simple configuration pruning algorithm based on second-order Epstein-Nesbet perturbation theory. The resulting method, which we denote p-DFT/MRCI, is shown to result in orders of magnitude saving in computational timings, while retaining the accuracy of the original DFT/MRCI method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call