Abstract

The Ru(tda) catalyst has been a major milestone in the development of molecular water oxidation catalysts due to its outstanding performance at neutral pH. The role of the noncoordinating carboxylate group is to act as a nucleophile, donating an oxygen atom to the oxo group, thereby acting as an oxide relay (OR) mechanism for O-O bond formation. A substitution of the carboxylates for phosphonate groups has been proposed, resulting in the Ru(tPaO) catalyst, which has shown even more efficient performance in experimental characterization. In this study, we explore the feasibility of the OR mechanism in the newly reported Ru(tPaO) molecular catalyst. We investigated the catalytic cycle using density functional theory and identified a variation of the OR mechanism that involves radical oxygen atoms in O-O bond formation. We have also determined that the subsequent hydroxide nucleophilic attack is the sole rate-limiting step in the catalytic cycle. All activation free energies are very low, with a free-energy barrier of 2.1 kcal/mol for O-O bond formation and 4.2 kcal/mol for OH- nucleophilic attack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call