Abstract

We have developed a novel anti-vascular technique, termed photo-mediated ultrasound therapy (PUT), which utilizes nanosecond duration laser pulses synchronized with ultrasound bursts to remove the microvasculature through cavitation. The objective of the current study is to explore the potential of PUT in removing subcutaneous microvessels. The auricular blood vessels of two New Zealand white rabbits were treated by PUT with a peak negative ultrasound pressure of 0.45 MPa at 0.5 MHz, and a laser fluence of 0.056 J/cm2 at 1064 nm for 10 minutes. Blood perfusion in the treated area was measured by a commercial laser speckle imaging (LSI) system before and immediately after treatment, as well as at 1 hour, 3 days, 2 weeks, and 4 weeks post-treatment. Perfusion rates of 38 individual vessels from four rabbit ears were tracked during this time period for longitudinal assessment. The measured perfusion rates of the vessels in the treated areas, as quantified by the relative change in perfusion rate, showed a statistically significant decrease for all time points post-treatment (P < 0.001). The mean decrease in perfusion is 50.79% immediately after treatment and is 32.14% at 4 weeks post-treatment. Immediately after treatment, the perfusion rate decreased rapidly. Following this, there was a partial recovery in perfusion rate up to 3 days post-treatment, followed by a plateau in the perfusion from 3 days to 4 weeks. This study demonstrated that a single PUT treatment could significantly reduce blood perfusion by 32.14% in the skin for up to 4 weeks. With unique advantages such as low laser fluence as compared with photothermolysis and agent-free treatment as compared with photodynamic therapy, PUT holds the potential to be developed into a new tool for the treatment of cutaneous vascular lesions. Lasers Surg. Med. © 2020 Wiley Periodicals, LLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.