Abstract

Removing solids from slurry manure helps balance nutrients to plant needs and may increase soil infiltration rate toreduce loss of ammonia. The long-term effects of applying the separated liquid fraction (SLF) of dairy slurry with surface banding applicators are not well known. This 6-yr study compared the yield, N recovery, and stand persistence of tall fescue (Festuca arundinacea Schreb.) receiving SLF at 300 (SLF300) and 400 (SLF400) kg ha(-1) yr(-1) of total ammoniacal N (TAN); whole dairy slurry (WS) at 200 (WS200), 300 (WS300), and 400 (WS400) kg TAN ha(-1) yr(-1); and mineral fertilizerat 300 kg N ha(-1) yr(-1). The slurries were applied four times per year by surface banding, a technique that reduces ammonia emission and canopy contamination. Grass yield and N uptake were significantly higher for SLF300 than WS300 atequivalent rates of TAN. At similar total N, yield and N uptake were much greater for SLF than WS (2 Mg DM ha(-1) and 75 kg N ha(-1), respectively). Apparent total N recoverywas 63% greater for SLF300 than WS300 due to less ammonia loss and less immobile N. The apparent recovery of total N was 31% higher for Fert300 than for SLF300. Yield and N uptake for SLF300 and WS300 were similar in Harvests 1 and4, but SLF had higher values under hot and dry conditions in Harvests 2 and 3. Using SLF rather than WS will increase crop yield and allow higher application volumes near barns, whichwill reduce hauling costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call