Abstract
Cone beam computed tomography (CBCT) is an important tool for clinical diagnosis and many industrial applications. However, ring artifacts usually appear in CBCT images, due to device responding inconsistence. This paper designs a generative adversarial network (GAN) to remove ring artifacts and meanwhile to retain important texture details in CBCT images. This method firstly transforms ring artifacts in Cartesian coordinates to stripe artifacts in polar coordinates, which is very helpful for removing ring artifacts. Then, we design a new loss function for GAN, including three parts: unidirectional relative total variation loss, perceptual loss and adversarial loss. Further, inspired by super-resolution generative adversarial networks, we use very deep residual networks for both generator and discriminator. Experimental results show that the proposed method is more effective for ring artifacts removal, compared to our baseline and some traditional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.