Abstract
In eukaryotes, RNA polymerase II (Pol II) is responsible for the synthesis of all mRNAs and myriads of short and long untranslated RNAs, whose fabrication involves close spatiotemporal coordination between transcription, RNA processing and chromatin modification. Crucial for such a coordination is an unusual C-terminal domain (CTD) of the Pol II largest subunit, made of tandem repetitions (26 in yeast, 52 in chordates) of the heptapeptide with the consensus sequence YSPTSPS. Although largely unstructured and with poor sequence content, the Pol II CTD derives its extraordinary functional versatility from the fact that each amino acid in the heptapeptide can be posttranslationally modified, and that different combinations of CTD covalent marks are specifically recognized by different protein binding partners. These features have led to propose the existence of a Pol II CTD code, but this expression is generally used by authors with some caution, revealed by the frequent use of quote marks for the word ‘code’. Based on the theoretical framework of code biology, it is argued here that the Pol II CTD modification system meets the requirements of a true organic code, where different CTD modification states represent organic signs whose organic meanings are biological reactions contributing to the many facets of RNA biogenesis in coordination with RNA synthesis by Pol II. Importantly, the Pol II CTD code is instantiated by adaptor proteins possessing at least two distinct domains, one of which devoted to specific recognition of CTD modification profiles. Furthermore, code rules can be altered by experimental interchange of CTD recognition domains of different adaptor proteins, a fact arguing in favor of the arbitrariness, and thus bona fide character, of the Pol II CTD code. Since the growing family of CTD adaptors includes RNA binding proteins and histone modification complexes, the Pol II CTD code is by its nature integrated with other organic codes, in particular the splicing code and the histone code. These issues will be discussed taking into account fascinating developments in Pol II CTD research, like the discovery of novel modifications at non-consensus sites, the recently recognized CTD physicochemical properties favoring liquid-liquid phase separation, and the discovery that the Pol II CTD, originated before the divergence of most extant eukaryotic taxa, has expanded and diversified with developmental complexity in animals and plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.