Abstract

High amounts of phosphorus (P) are in soil of former farmland due to previous fertilizer additions. Draining these residues would provide conditions for grassland plant species diversity restoration amongst other ecosystem benefits. Nitrogen (N) fertilization followed by cutting with subsequent removal of biomass has been suggested as a P residue removal method. We present a general model of N and P ecosystem cycling with nutrients coupled in plant biomass. We incorporate major P pools and biological and physico-chemical fluxes around the system together with transfers into and out of the system given several decades of management. We investigate conditions where N addition and cutting accelerate fertilizer P draining. Cutting does not generally accelerate soil P depletion under short-term management because the benefits of biomass removal through decreased P mineralization occur on too long a timescale compared to cutting’s impact on the ability of plants to deplete nutrients. Short-term N fertilization lowers soil fertilizer P residues, provided plant growth remains N limited. In such situations, N fertilization without biomass removal increases soil organic P. Some scenarios show significant reductions in available P following N addition, but many situations record only marginal decreases in problematic soil P pools compared to the unfertilized state. We provide explicit conditions open to experimental testing. Cutting might have minimal adverse impacts, but will take time to be successful. N fertilization either alone or in combination with cutting is more likely to bring about desired reductions in P availability thus allowing grassland restoration, but might have undesired ecosystem consequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.