Abstract

Acid/base/oxidant pretreatment influenced subsequent quaternary ammonium epoxide compounds modified carbon (QAE-AC) and hence PFOA and nitrate removal. This work discerned that the most favorable QAE-AC protocol for PFOA removal was achieved when the wood carbon pretreated with HNO3 to adjust the carbon's slurry pH to 4.77, and tailored with the QUAB188. For nitrate removal, the most favorable when the carbon was pretreated with NaOH to raise the carbon's slurry pH to 9.34, and then loaded with the QUAB360. Based on experimentally results and molecular model, we found that pore volume, phenolic groups and the surface charge were the main factors affecting the PFOA removal, while the only factor affecting nitrate removal was surface charge. The QUAB's epoxide functionalities have cross-linked with phenolics along the activated carbon's graphene edge sites. QAE is preferentially reacted with the phenolic in the micropores and mesopores of carbon, and some QAE molecules form new "pore-like structures" outside the pores with the graphene planes or other QAE molecules. This pore-like structure hosted adsorption capacity by the quaternary ammonium. The favorable PFOA adsorption sites were in smaller mesopores via both hydrophobic interaction and electrostatic interaction; and nitrate sorption was occurring in the smaller micropores via anion exchange. Therefore, it can be considered that QAE-AC can simultaneously adsorb PFOA and nitrate in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.