Abstract

Atomic force microscopy (AFM) has been an effective material removing tool for fabricating various nanostructures because of its sub-nanometer precision and simplicity in operation. AFM material removing techniques have evolved from a solely mechanical process to one in which the tip can be loaded by additional energy sources, such as thermal, electric, or chemical, to enhance its fabrication abilities. In this paper, these material removing techniques are reviewed with an emphasis on their capabilities and recent progress. The recent hardware and software developments are first presented to provide a general view on the current status of the technology to be assessed. Following an overview of the feasibility and effectiveness of using mechanical scratching for removing various types of soft and hard materials, the processes of a wide range of approaches using multiple tip sources are then assessed with a focus on their principles, versatilities, and potentials for future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.