Abstract

We use velocity map imaging of photoelectrons in coincidence with molecular cations to determine which ionic states are populated via strong field ionization, and whether the ionization to excited ionic states proceeds indirectly via the ground ionic state or directly from the neutral. We carry out measurements on a series of molecules that have different energy gaps between the ground ionic state and dissociative excited states. We measure both direct and indirect ionization to excited states of the molecular cations, and find that the energy gap between non-dissociative and dissociative states plays an important role in determining the amount of excited state ionization. Direct ionization to dissociative states is generally comparable to ionization to the ground state for gap energies less than the photon energy, but is suppressed for gap energies larger than the photon energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call