Abstract
Ab initio and density-functional theory calculations for a family of substituted acetylenes show that removing electrons from these molecules causes the electron density along the C-C bond to increase. This result contradicts the predictions of simple frontier molecular orbital theory, but it is easily explained using the nucleophilic Fukui function-provided that one is willing to allow for the Fukui function to be negative. Negative Fukui functions emerge as key indicators of redox-induced electron rearrangements, where oxidation of an entire molecule (acetylene) leads to reduction of a specific region of the molecule (along the bond axis, between the carbon atoms). Remarkably, further oxidization of these substituted acetylenes (one can remove as many as four electrons!) causes the electron density along the C-C bond to increase even more. This work provides substantial evidence that the molecular Fukui function is sometimes negative and reveals that this is due to orbital relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.