Abstract

Haloacetaldehyde (HAL) is a type of disinfection byproduct (DBP) commonly detected in disinfected drinking water, and concerns toward its cytotoxic effects have promoted numerous efforts to control it. Given that household water treatment (HWT) process is a promising approach to polish drinking water quality and has been widely used by public, we herein evaluated the performances of two household heating devices (electric kettle and microwave oven) on the removals of three types of chlorinated haloacetaldehydes (Cl-HALs) under varying operating and water conditions. Results showed that the removals of HALs by boiling water to 100 °C were not very efficient (<20%) under automatic switch-off mode when chlorine was absent. The key mechanism responsible for Cl-HALs loss was likely volatilization because altering heating or cooling time did not enhance Cl-HALs’ attenuations significantly. In contrast, Cl-HALs were readily transformed (>80%) when 1.0 mg/L chlorine was present without prolonging boiling time. Adding chlorine quencher (ascorbic acid) inhibited Cl-HALs’ removals substantially, confirming that chlorine played a key role in the transformation process. The reactions between Cl-HALs and chlorine can be accelerated by raising water temperature and chlorine dosage. Stepwisely, monochloroacetaldehyde was transformed into dichloroacetaldehyde (DCAL), then DCAL was converted into trichloroacetaldehyde (TCAL), and eventually the C–C bond of TCAL was cleaved to form trichloromethane and formic acid. The study hence explains the differences on the removals of Cl-HALs between with and without adding chlorine and meanwhile identifies the limits of domestic heating devices in removing Cl-HALs from drinking water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.