Abstract

To investigate hemodynamic stresses on anterior cerebral artery bifurcation apex and possible mechanism of the optimality principle in protecting bifurcation wall from supercharged hemodynamic stresses. Three-dimensional angiographic datasets of 122 patients with anterior communicating artery (Acom) aneurysms, 21 patients with non-Acom aneurysms, and 220 control subjects with no aneurysms were used. Radii of parent (r0) and daughter branches (r1 and r2) were measured, and bifurcations obeying the optimality principle required optimal caliber control of r0n= r1n+ r2n, with the junction exponent n approximating 3. Radius ratio= r03/(r13+ r23) and n were compared between aneurysmal and control bifurcations. Blood flow was simulated for analysis of hemodynamic stresses. Acom bifurcations in subjects without Acom aneurysms displayed optimal caliber radius, with mean radius ratio of 0.99 and n of 3.25, whereas Acom aneurysmal bifurcations had significantly lower radius ratio, 0.62 (P < 0.05), but higher n, 4.23 (P < 0.05). Peak wall shear stress and corresponding total pressure were significantly smaller for bifurcations obeying than disobeying the optimality principle (P < 0.001 and P < 0.05, respectively). Total pressures in the direct impinging center, peak wall shear stress distance, and anterior cerebral artery bifurcation angle all were significantly smaller for bifurcations obeying than disobeying the optimality principle (P < 0.05 and P < 0.001, respectively). Normal anterior cerebral artery bifurcations obey the optimality principle whereas bifurcations with Acom aneurysms do not. Disobeying the optimality principle presents significantly enhanced hemodynamic stresses to possibly damage the bifurcation wall for aneurysm initiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.