Abstract

Clay minerals have been widely used in wastewater disposal due to their strong sorption and complexation ability towards various environmental pollutants. In this study, the removal of Zn(II) from aqueous solution by natural halloysite nanotubes (HNTs) was studied as a function of various solution chemistry conditions such as contact time, pH, ionic strength, coexisting electrolyte ions and temperature under ambient conditions. The results indicated that the removal of Zn(II) by HNTs was strongly dependent on pH and ionic strength. Langmuir and Freundlich models were used to simulate the sorption isotherms of Zn(II) at three different temperatures of 293, 313 and 333 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the removal process of Zn(II) by HNTs was endothermic and spontaneous. At low pH, the removal of Zn(II) was dominated by outer-sphere surface complexation and/or cation exchange with Na+/H+ on HNT surfaces, whereas inner-sphere surface complexation was the main removal mechanism at high pH. From the experimental results, one can conclude that HNTs may have a good potentiality for the disposal of Zn(II)-bearing wastewaters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call